Magic of MicroPellets
Setting the Stage
Pellet Size Comparison

MicroPellet = 1 mm or smaller

MiniPellet = 1 mm to 2 mm

Standard pellet = 2 mm or larger
Testing

- **Bulk density test**
 - Powder allowed to flow into cup.
 - Remove excess powder. Weigh.
 - Bulk density = powder weight / volume
 - ASTM D1895

- **Dry flow test**
 - Standard weight of powder placed in funnel. Time taken to flow through standard orifice measured.
 - ISO 6186
 - ASTM D1895

![Bulk density cup](image)

Bulk density cup
Capacity 100 cc

![Dry flow funnel](image)

Dry flow funnel
3.5 mm
Powder/MicroPellet Comparison

Apparent Density and Dry Flow

Density = 34
Flow = 27 seconds

Density = 53
Flow = 11 seconds

Dowlex 2631 UE RX-102
MI 7, Density 0.935
MicroPellet Shape
Related to Molding

- Filling tight cavity molds
 - MicroPellets can be introduced through the vent or insert areas of the mold.
- Flow into difficult areas of the molds
- Higher Bulk density allows more material to fit in the mold
- PSD measures the diameter of a particle
- Powder dust can be harmful
 - Contamination
 - Employee health
 - Explosive/Flammable
- Higher bulk density equates to less voids during lay-down
 - Less bubbles, requires less time to dissolve
- Bridging of material
- Consistency!!!!!!!!
PSD measures the diameter of the particle, not the length.
Powder Tank under natural light

MicroPellet Tank under natural light
Controlling the Process

• **K-Paq** measures the mold temperature and the internal air pressure in real time.

• The data is transmitted out of the oven and cooler bays to a control station where the data is then recorded for in-line analysis.
Thermocouple in Mold
Temperature graphing

- Material starts to melt
- Melting complete
- During the cooking bubbles will be dissolved

Optimum process temperature (PIAT)

Solidification

© 2015 Gala Industries, Inc.
Cooking Comparison

Powder in the mold
Cooking Comparison
Laying Down on the Mold

Density = 34

Density = 53
Processing time

- Used the Rotolog to determine the peak internal air temperature.

- Oven shuts down at PIAT of 375°F/191°C
 - Powder tank took 70 minutes to reach PIAT
 - MicroPellet tank reached PIAT in 64.5 minutes.
Bulk Density

• Same time needed for both parts
 – 3800 lbs/1720 kgs shot size for the powder
 – 4000 lbs/ 1814 kgs shot size for the Micros
Try to Watch Both Hands
Cooking Comparison
Temperature graphing

- Material starts to melt
- Melting complete

Dowlex 2631 UE RX-102
MI 7, Density 0.935
Final Act
Benefits of using MicroPellets

- Cleaner – virtually no dust
- Compounding (e.g., Coloring) and MicroPelletizing can be achieved in a single step
- Micropellets have a better packing density than powder.
- Improved flow characteristics: Fills hard to reach areas in complex molds. Enables more uniform inner layers.
- Consistent lay-down and cook times.
Powder

MicroPellets

All Pictures Taken With Flash
Benefits of using MicroPellets

- Enhanced part detail definition (threads, logos, lettering)
- Better impact results are typically reported.
- Segregation of powder in the container
- Possibility of improved process conditions:
 - Lower temperatures
 - Reduced cycle times
 - Slower rotation speeds
 - Faster mold charging
- Uniform wall thickness, giving potential of shot weight reduction.
Matthew Tornow
Process Engineering
MicroPelletizing Applications Manager
Gala Industries, Inc.
181 Pauley Street
Eagle Rock, VA 24085 USA
540 884 3392

All of the material in this presentation is Gala Industries’ confidential information and should not be presented, discussed or distributed without written consent.